12,909 research outputs found

    Planetesimal disk evolution driven by embryo-planetesimal gravitational scattering

    Get PDF
    The process of gravitational scattering of planetesimals by a massive protoplanetary embryo is explored theoretically. We propose a method to describe the evolution of the disk surface density, eccentricity, and inclination caused by the embryo-planetesimal interaction. It relies on the analytical treatment of the scattering in two extreme regimes of the planetesimal epicyclic velocities: shear-dominated (dynamically ``cold'') and dispersion-dominated (dynamically ``hot''). In the former, planetesimal scattering can be treated as a deterministic process. In the latter, scattering is mostly weak because of the large relative velocities of interacting bodies. This allows one to use the Fokker-Planck approximation and the two-body approximation to explore the disk evolution. We compare the results obtained by this method with the outcomes of the direct numerical integrations of planetesimal orbits and they agree quite well. In the intermediate velocity regime an approximate treatment of the disk evolution is proposed based on interpolation between the two extreme regimes. We also calculate the rate of embryo's mass growth in an inhomogeneous planetesimal disk and demonstrate that it is in agreement with both the simulations and earlier calculations. Finally we discuss the question of the direction of the embryo-planetesimal interaction in the dispersion-dominated regime and demonstrate that it is repulsive. This means that the embryo always forms a gap in the disk around it, which is in contrast with the results of other authors. The machinery developed here will be applied to realistic protoplanetary systems in future papers.Comment: 40 pages, 9 figures, submitted to A

    Good rotations

    Full text link
    Numerical integrations in celestial mechanics often involve the repeated computation of a rotation with a constant angle. A direct evaluation of these rotations yields a linear drift of the distance to the origin. This is due to roundoff in the representation of the sine s and cosine c of the angle theta. In a computer, one generally gets c^2 + s^2 1, resulting in a mapping that is slightly contracting or expanding. In the present paper we present a method to find pairs of representable real numbers s and c such that c^2 + s^2 is as close to 1 as possible. We show that this results in a drastic decrease of the systematic error, making it negligible compared to the random error of other operations. We also verify that this approach gives good results in a realistic celestial mechanics integration.Comment: 24 pages, 3 figure

    The measured compositions of Uranus and Neptune from their formation on the CO iceline

    Full text link
    The formation mechanisms of the ice giants Uranus and Neptune, and the origin of their elemental and isotopic compositions, have long been debated. The density of solids in the outer protosolar nebula is too low to explain their formation, and spectroscopic observations show that both planets are highly enriched in carbon, very poor in nitrogen, and the ices from which they originally formed might had deuterium-to-hydrogen ratios lower than the predicted cometary value, unexplained properties observed in no other planets. Here we show that all these properties can be explained naturally if Uranus and Neptune both formed at the carbon monoxide iceline. Due to the diffusive redistribution of vapors, this outer region of the protosolar nebula intrinsically has enough surface density to form both planets from carbon-rich solids but nitrogen-depleted gas, in abundances consistent with their observed values. Water rich interiors originating mostly from transformed CO ices reconcile the D/H value of Uranus and Neptune's building blocks with the cometary value. Finally, Our scenario generalizes a well known hypothesis that Jupiter formed on an iceline (water snowline) for the two ice giants, and might be a first step towards generalizing this mechanism for other giant planets.Comment: The Astrophysical Journal (in press), 8 pages, 5 figure

    Termination of planetary accretion due to gap formation

    Full text link
    The process of gap formation by a growing planetary embryo embedded in a planetesimal disk is considered. It is shown that there exists a single parameter characterizing this process, which represents the competition between the gravitational influence of the embryo and planetesimal-planetesimal scattering. For realistic assumptions about the properties of the planetesimal disk and the planetary embryo, a gap is opened long before the embryo can accrete all the bodies within its region of influence. The implication of this result is that the embryo stops growing and, thus, large bodies formed during the coagulation stage should be less massive than is usually assumed. For conditions expected at 1 AU in the solar protoplanetary disk, gap formation is expected to occur around bodies of mass < 10^24 g. The effect of protoplanetary radial migration is also discussed.Comment: 21 pages, 3 figures, submitted to A

    An ab initio study of magneto-electric coupling of YMnO3\rm YMnO_3

    Full text link
    The present paper proposes the direct calculation of the microscopic contributions to the magneto-electric coupling, using ab initio methods. The electrostrictive and the Dzyaloshinskii-Moriya contributions were evaluated individually. For this purpose a specific method was designed, combining DFT calculations and embedded fragments, explicitely correlated, quantum chemical calculations. This method allowed us to calculate the evolution of the magnetic couplings as a function of an applied electric field. We found that in YMnO3\rm YMnO_3 the Dzyaloshinskii-Moriya contribution to the magneto-electric effect is three orders of magnitude weaker than the electrostrictive contribution. Strictive effects are thus dominant in the magnetic exchange evolution under an applied electric field, and by extension on the magneto-electric effect. These effects remain however quite small and the modifications of the magnetic excitations under an applied electric field will be difficult to observe experimentally. Another important conclusion is that the amplitude of the magneto-electric effect is very small. Indeed, it can be shown that the linear magneto-electric tensor is null due to the inter-layer symmetry operations.Comment: J. Phys. Cond. Matter 201

    A Possible Divot in the Size Distribution of the Kuiper Belt's Scattering Objects

    Full text link
    Via joint analysis of a calibrated telescopic survey, which found scattering Kuiper Belt objects, and models of their expected orbital distribution, we measure the form of the scattering object's size distribution. Ruling out a single power-law at greater than 99% confidence, we constrain the form of the size distribution and find that, surprisingly, our analysis favours a very sudden decrease (a divot) in the number distribution as diameters decrease below 100 km, with the number of smaller objects then rising again as expected via collisional equilibrium. Extrapolating at this collisional equilibrium slope produced enough kilometer-scale scattering objects to supply the nearby Jupiter-Family comets. Our interpretation is that this divot feature is a preserved relic of the size distribution made by planetesimal formation, now "frozen in" to portions of the Kuiper Belt sharing a "hot" orbital inclination distribution, explaining several puzzles in Kuiper Belt science. Additionally, we show that to match today's scattering-object inclination distribution, the supply source that was scattered outward must have already been vertically heated to of order 10 degrees.Comment: accepted 2013 January 8; published 2013 January 22 21 pages, 4 figure

    Transient behavior of surface plasmon polaritons scattered at a subwavelength groove

    Get PDF
    We present a numerical study and analytical model of the optical near-field diffracted in the vicinity of subwavelength grooves milled in silver surfaces. The Green's tensor approach permits computation of the phase and amplitude dependence of the diffracted wave as a function of the groove geometry. It is shown that the field diffracted along the interface by the groove is equivalent to replacing the groove by an oscillating dipolar line source. An analytic expression is derived from the Green's function formalism, that reproduces well the asymptotic surface plasmon polariton (SPP) wave as well as the transient surface wave in the near-zone close to the groove. The agreement between this model and the full simulation is very good, showing that the transient "near-zone" regime does not depend on the precise shape of the groove. Finally, it is shown that a composite diffractive evanescent wave model that includes the asymptotic SPP can describe the wavelength evolution in this transient near-zone. Such a semi-analytical model may be useful for the design and optimization of more elaborate photonic circuits whose behavior in large part will be controlled by surface waves.Comment: 12 pages, 10 figure

    Spin mixing in colliding spinor condensates: formation of an effective barrier

    Full text link
    The dynamics of F=1 spinor condensates initially prepared in a double-well potential is studied in the mean field approach. It is shown that a small seed of m=0m=0 atoms on a system with initially well separated m=1 and m=-1 condensates has a dramatic effect on their mixing dynamics, acting as an effective barrier for a remarkably long time. We show that this effect is due to the spinor character of the system, and provides an observable example of the interplay between the internal spin dynamics and the macroscopic evolution of the magnetization in a spinor Bose-Einstein condensate.Comment: Accepted for publication at the Europhysics Letter

    Predicting spinor condensate dynamics from simple principles

    Get PDF
    We study the spin dynamics of quasi-one-dimensional F=1 condensates both at zero and finite temperatures for arbitrary initial spin configurations. The rich dynamical evolution exhibited by these non-linear systems is explained by surprisingly simple principles: minimization of energy at zero temperature, and maximization of entropy at high temperature. Our analytical results for the homogeneous case are corroborated by numerical simulations for confined condensates in a wide variety of initial conditions. These predictions compare qualitatively well with recent experimental observations and can, therefore, serve as a guidance for on-going experiments.Comment: 4 pages, 2 figures. v3: matches version appeared in PR

    Influence of the C/O ratio on titanium and vanadium oxides in protoplanetary disks

    Full text link
    Context. The observation of carbon-rich disks have motivated several studies questioning the influence of the C/O ratio on their gas phase composition in order to establish the connection between the metallicity of hot-Jupiters and that of their parent stars. Aims. We to propose a method that allows the characterization of the adopted C/O ratio in protoplanetary disks independently from the determination of the host star composition. Titanium and vanadium chemistries are investigated because they are strong optical absorbers and also because their oxides are known to be sensitive to the C/O ratio in some exoplanet atmospheres. Methods. We use a commercial package based on the Gibbs energy minimization technique to compute the titanium and vanadium equilibrium chemistries in protoplanetary disks for C/O ratios ranging from 0.05 to 10. Our calculations are performed for pressures ranging from 1e-6 to 1e-2 bar, and for temperatures ranging from 50 to 2000 K. Results. We find that the vanadium nitride/vanadium oxide and titanium hydride/titanium oxide gas phase ratios strongly depend on the C/O ratio in the hot parts of disks (T > 1000 K). Our calculations suggest that, in these regions, these ratios can be used as tracers of the C/O value in protoplanetary disks.Comment: Accepted for publication in A&
    • …
    corecore